关于独立部分和的增量大小
ON INCREMENTS OF SUMS OF INDEPENDENT RANDOM VARIABLES
-
摘要: 本文利用熟知的Skorokhod嵌入定理,讨论了r阶矩母函数存在或者二阶矩存在但对任一δ>0,2+δ阶矩不存在的独立不同分布部分和的增量大小,得到了理想的结果。同时为讨论相依随机变量部分和的增量大小提供了一条简捷的途径。Abstract: In this paper the well-known Skorokhod embedding theorem is used to consider the increments of partial sums of independent (not necessarily identically distributed) random variables when the r-th (0<r≤1)moment generating function exists or the 2nd moment exists but (2+δ)th does not for any δ>0. The results obtained are ideal. It is particularly worth to mentioning that the method in this paper is also available for weakly dependent random variables.