Gauss-Markoff估计的协方差改进形式及其在SUR模型中的应用

The Covariance Adjustment Version of Gauss-Markoff Estimator and Its Application to Seemingly Unrelated Regression Equations

  • 摘要: 本文采用并推广Rao1的协方差改进原理,证明了线性模型(1.1)的Gauaa-Markoff估计(1.2)具有协方差改进形式\hat\beta=\left(X^\prime X\right)^-1 X^\prime Y-\left(X^\prime X\right)^-1 X^\prime V NN V N^+ N Y,其中NIXX'X-1X'.这一结果用于SUR系统yiXiβiεii=1,2,…,m),容易得到Zellner两步估计的有限样本性质.本文得到了一类系统的有限样本方差结果,从而完善了一些已有结果。

     

    Abstract: A lemma of Rao’s covariance adjustment theory is extended, and the Gauss-Markoff estimator \hat\beta of β in linear model Yε,ε~ (0, V) is given as \hat\beta=\left(X^\prime X\right)^-1 X^\prime Y-\left(X^\prime X\right)^-1 X^\prime V NN V N^+ N Y, where NIXX'X-1X'. The application of this version to the system of Seemingly Unrelated Regression (SUR) equations: yiXiβiεii=1,…,m) is considered, and some exact finite sample results in a class of SUR system with P1=…= Pk, Pk+1 =…= Pm,P1PmPm P1 are obtained

     

/

返回文章
返回