在Rd的VC类上Wiener测度的上界
Sample Module for the Wiener Process on a VC Class of Rd
-
摘要: 本文考察指标集为d维欧氏空间Rd的子集类c的Wiener过程W的样本轨道性质.在某些情形中,对0<an≤nd,an是不减的且an/nd是不增的假设下,求得函数Ψn使 \limsup _n \rightarrow \infty \sup \left\\left|W\left(C^(n)\right)\right| / \psi_n: C^(n) \in \mathcalC,\left|C^(n)\right| \leq a_n\right\=1, \quad \text a.s.. 给出了Wiener测度在Rd的VC类的界,它也推广了Csörgö-Révész关于Wiener过程增量的结果于这一一般情形。Abstract: Sample path behavior is studied for the Wiener processes W indexed by classes C of subsetsof the Borel δ-field of Rd. For 0<an ≤nd, an is nondecreasing and an/nd is nonmcreasing, afunction Ψn is found in some cases such that limsupn→∝sup{|W(C(n))|/Ψn:C(n)∈C|C(n)|≤an}=1 a.s. This generalies the Csörgö-Révész’s increments results for a Wiener process.