向量值B类GWT的收敛性
ON CONVERGENCE OF VECTOR-VALUED GWT OF CLASS B
-
摘要: 本文证明了:若Bonach格E同构于l1(Γ)的一个子格对某一指标集Γ,则每一个B-类E值GWT在E中强拓扑下依概率收敛,若E有RNP,则每一个B-类E-值GWT在E中强拓扑下依概率收敛。Abstract: Let (\Omega, \mathscrF, P) be a probability space, and E a Banach lattice.In this paper we prove that (1) if E is isomorphic to a sublatticc ofl1(Γ) for a certain Г, then every E-valued GWT of class B- is strongly convergent in pr.and every E-valued subpramart of class B+ is strongly convergent a.e.(2) If E have RNP, then every E--valued GWT of class B- is strongly convergent in pr.