一个半参数回归模型中Cramér渐近有效性的充要条件
A Sufficient and Necessary Condition on Cramér Asymptotic Efficiency in a Semiparametric Regression Model
-
摘要: 本文考虑模型Y = Xrβ+ g(T)+ε,这里(Xr,T, Y)是k + 2-维随机向量,g是未知光滑函数,ε是均值为零方差有限的随机误差。本文证明了β的最小二乘估计是Cramér渐近有效的充要条件是误差ε服从正态分布N(0, σ2)。Abstract: The paper is concerned with the semiparametric regression model Y = Xrβ+ g(T)+ε, where(Xr,T, Y) are (k + 2)-dimensional random vector, g(·) is an unknown smooth function to be estimated, ε is variable error with zero mean and finite variance It is shown that the LS estimators of β is asymptotically efficiency in sense of Cramér if and only if ε-N(0, σ2).