对数项混料模型及其D-最优性

THE MIXTURE MODELS WITH LOGARITHMIC TERMS AND THEIR D-OPTIMALITY

  • 摘要: 本文提出了具有对数项的新混料模型,它是Soheffé典型多项式模型的推广,并且是与Draper和st.John的倒数项混料模型相平行的另一种形式。对于在三分量和四分量的情形,我们利用Kiefor-Wolfowitz的等价定理,Fedorov和Wynn的方法以及本文提出的组合搜索所组成的计算机辅助设计方法,分别证明和构造了一次和二次的对数项混料模型的近似D-最优测度设计和Dn-最优确切设计。此外,本文还给出新模型在工程陶瓷材料研究中的实际应用。同时,把它与国外文献上的实例作了统计分析的比较。

     

    Abstract: In this paper a type of mixture models with logarithmic terms is given. These models are extensions of Scheffé’s canonical models and alternatives of Draper and St. John’s mi xturemodels wish inverse terms. Using computer-aided design method which consists of Kiefer-Wolfowitz’s equivalence theorm, Fedorov’s and Wynn’s iteration processes, and combinatorial searching suggested by authors, we prove and construct the approximate D-optimal measure and Dn-optimal exact designs for use with first and second order mixtures regression models with logarithmic terms in three and four components. To illustrate our new model’s viability and ease of use with real data, we give in this paper anapplication of this new model to industrial ceramic material. Moreover, Using published data from Mclean and Anderson, we show the model fitting wish logarithmic term mixture model and compare it with Draper and St. John’s model.

     

/

返回文章
返回