随机删失场合基于Synthetic Data的回归函数的核估计及强相合性
Regression Function Kernel Estimation Based on Synthetic Data Under Random Censorship
-
摘要: 设(X1,Y1),…,(Xn,Yn)是来自总体(X,Y)的取值于Rd×R上的i.i.d.随机向量,m(x)=E(Y \mid X=x)是未知的非参数回归函数,Yi被随机变量Ti删失,只能观察到Z_i=\min \left\Y_i, T_i\right\, \delta_i=\leftY_i \leq T_i\right, i=1, \cdots, n,本文分别在Ti的分布函数已知和未知的情形下,利用Leurgans等人提出的Synthetic data方法获得新的数据Yi*与Yi**,考虑了m(x)的核估计并且证明了其强相合性。Abstract: Let(X1,Y1),…,(Xn,Yn) be i.i.d. Rd×R random vectors coming from population (X,Y), and m(x)=E(Y \mid X=x) be a unknown nonparametric regression function. Now, Yi are randomly censored by Ti , where Ti are i.i.d. samples of random variable T, independent of (Xi, Yi). We can only observe Z_i=\min \left\Y_i, T_i\right\, \delta_i=\leftY_i
Yi* and Yi** using the synthetic data method proposed by Leurgans, etc., and proposes the kernel estimates M*(x) and m**(x) of m(x), under some conditions, these estimates are shown strongly consistent.