多元线性模型中的一个参数函数的UMVIQUE的存在性

The Existence Of UMVIQUE For An Unknow Parameter in Multivariate Linear Model

  • 摘要: 考虑多元线性模型 Y=X1BX'2+ ,Eε=0,其中ε=(ε1,…,εn)',\vec\epsilon=\widehat=\left(\varepsilon_1^\prime, \cdots, \varepsilon_n^\prime\right)^\prime, \quad \mathrmE\left(\vec\epsilon \vec\epsilon^\prime\right)=I \otimes \Sigma, \Sigma \geq 0是未知协差阵。本文给出了tr(C∑)的一致最小方差不变二次无偏估计(简记为UMVIQUE)存在的充要条件。

     

    Abstract: Let Y=X1BX'2+ ,Eε=0,be a multivariate linear model, whereX1 andBX'2 are known matrics, B is an unknown matrix and e is a random matrix. Assume thatε=(ε1,…,εn)',\vec\epsilon=\widehat=\left(\varepsilon_1^\prime, \cdots, \varepsilon_n^\prime\right)^\prime and\mathrmE(\vec\varepsilon \vec\varepsilon)=I \otimes \Sigma, where \Sigma \geq 0 is an unknown covariance matrix. This paper gives a sufficient and necessary condition for \vecY^\prime(MAM)\vecY to be the uniformly minimum variance invariance quadratic unbased estimation (UMVIQUE) of tr(CΣ), where M=I-X_1 X_1^+ \otimes X_2 X_2^+ and C≠0 is an arbitrary symmetric matrix. As corollary, the sufficient and necessary conditions for UMVIQUE of tr(CΣ) to be exist and tr(CΣ*) to be the UMVIQUE of it(CΣ) are given.

     

/

返回文章
返回