复杂设计下类均值复制与类加权均值复制的比较

Comparison of Class Mean Imputation and Weighted Class Mean Imputation under Complex Survey Design

  • 摘要: 复制数据是处理抽样调查中数据项目缺失的一种常用方法.在两种常见模型及复杂抽样设计下,本文对处理数据项目缺失的类均值复制和类加权均值复制方法进行了对比.

     

    Abstract: Unit non-response and item non-response are the two types of non-response in surveys. Imputation, a process in which values are assigned for missing responses, is typically employed to compensate for item missing data. Under complex survey design, weighted class mean is usually used as the imputed value. This paper compares three estimators related to class mean imputation and weighted class mean imputation under two models: equal expectation, equal and unequal variance within each class respectively. The conclusion is: For the equal variance model, the simple class mean estimator is the best, the class mean imputation estimator is the second and the weighted class mean imputation estimator is the worst. Under the specified unequal variance model, and the specified survey design, for large sample, the weighted class mean imputation estimator is better than class mean imputation estimator, which is better than the simple class mean estimator.

     

/

返回文章
返回