NA样本下部分线性模型中估计的强相合性
Strong Consistency of a Class of Estimators in Partial Linear Model for Negative Associated Samples
-
摘要: 考虑回归模型:yi=xiβ+g(ti)+σiei,1≤i≤n, 其中σi2=f(ui),(xi,ti,ui) 是固定非随机设计点列,f(·) 和 g(·) 是未知函数,β是待估参数,误差{ei}为NA变量.我们对β的最小二乘估计\widehat\beta_nn和加权最小二乘估计\bar\beta_nn,在适当的条件下得到了它们的强相合性。Abstract: Consider the heteroscedastic regression model: yi=xiβ+g(ti)+σiei, 1≤i≤n, where σi2=f(ui). Here the design points (xi,ti,ui) are known and nonrandom, g and f are unknown functions, β is an unknown parameter to be estimated, and the errors ei are negatively associated random variables. For the least squares estimator \widehat\beta_nn and the weighted least squares estimator \bar\beta_nn of β, we establish their strong consistency under suitable conditions.