协方差矩阵奇异情况下的最优投资组合

苏咪咪, 叶中行

协方差矩阵奇异情况下的最优投资组合

基金项目: 

国家自然科学基金(10171066)

上海市科委重点项目(02DJ14063).

详细信息
  • 中图分类号: O211

Optimal Mean-Variance Portfolio with Semi-Positive Variance-Covariance Matrix

  • 摘要: 本文讨论了在方差-协方差矩阵半正定条件下,Markowitz均值-方差最优投资组合模型的求解问题,利用主成分分析法得到了解析解,从而弥补了原模型的一个缺陷.
    Abstract: An approach based on principal component analysis is proposed for solving the problem of optimal portfolio in the case with semi-positive variance-covariance matrix. Analytic solution is obtained. This result fills up the gap of the original Markowitz’s model.
  • [1]

    Markowitz, H., Portfolio selection, Journal of Finance, 7(1)(1952), 77-91.

    [2]

    Markowitz, H., Portfolio Selection: Efficient Diversification of Investment, Wiley, New York, 1952.

    [3]

    Merton, R.C., An analytic derivation of the efficient portfolio frontier, Journal of Financial and Quantitative. Analysis, 7(1972), 1851-1872.

    [4]

    Fama, E., Foundation of Finance, Basic Books, Inc, Publishers, 1976.

    [5]

    Korn, R., Optimal Portfolio, World Scientific Publishing Co. Pte. Ltd, Singapore, 1997.

    [6]

    Buser, S.A., Mean-variance portfolio selection with either a singular or nonsingular variance- covariance matrix, Financial and Economic Research Section Division of Research, HB- 135-B88, 1976.

    [7] 叶中行,林建忠,数理金融一资产定价与金融决策理论,北京,科学出版社, 1998.
    [8]

    Jurczenko, E. and Maillet, B., The three-moment CAPM: Theoretical Foundations and an Asset Pricing Model Comparison in a Unified Framework, Developments in Forecast Combination and Portfolio Choice, Eds by C. Dunis etc, John Wiley & Sons, 239-273, 2001.

    [9] 程云鹏,矩阵论,西北工业大学出版社,1989.
    [10] 北京大学数学系几何与代数教研室代数小组编,高等代数(第二版),高等教育出版社,2000.
计量
  • 文章访问数:  10
  • HTML全文浏览量:  0
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2004-06-14

目录

    /

    返回文章
    返回