伽玛分布的尺度参数及自协方差估计

SCALE PARAMETER OF GAMMA DISTRIBUTION AND ITS AUTO-COVARIANCE ESTIMATION

  • 摘要: 本文发现伽玛分布的尺度参数等于随机变量及其对数的协方差,并利用这一有趣性质构造伽玛分布参数的自协方差估计。此法计算简便,结果优于矩估计,与极大似然估计十分接近。鉴于极大似然估计的修偏问题未予解决,本文所建议的无偏自协方差估计可以在小样本情形下弥补极大似然估计有偏的不足,自协方差估计的相合性、渐近正态性等大样本性质也得到了讨论。给出的模拟试验结果基本符台论证。

     

    Abstract: In this paper, we discover that the scale parameter of a gamma distribution is exactly equal to the covariance of the r. v. and its logarithm. We make use of this property to construct an auto-covariance estimator (ACE) of the parameters of gamma distribution. This new estimator is easier to calculate, better than the moment estimator and closer to the MLE. As the MLE’s are mostly biased and the bias cannot be reduced, the ACE’s may improve the position of the MLE’s in respect of unbiasedness when the size of sample is small. Consistency, asymptotic normality of the ACE’s are discussed also.

     

/

返回文章
返回