无RNP性Banach格中鞅型序列的收敛性

CONVERGENCE OF MARTINGALE-LIKE SEQUENCES IN BANACH LATTICES WITHOUT (RNP)

  • 摘要: 本文证明了(1)设E是序连续Banach格,\left(x_n, \mathscrF_n\right)_n>1是满足条件(C)的subpramart,若存在a.e.强收敛的强可测函数列(ynn≥1,使有 0≤xnyn,\forall n \geqslant 1,,则(xnn≥1a.e.强收敛.且每一个 E+值反向subpramart a.e.强收敛。(2)设EAL空间,若\left(x_n, \mathscrF_n\right)_n>1是E+值superpramart,则TLxna.e.存在。

     

    Abstract: In this paper it is proved that (1) under the supposition E is an order continuous Banach lattice and\left(x_n, \mathscrF_n\right)_n>1 is a subpramart of class (C), if there is an a. e. strongly convergent and strongly measurable sequence (ynn≥1 such that 0≤xnyn, n≥1, then (xnn≥1 is a. e. strongly convergent, and every E+-valued reversed subpramart is a. e. strongly convergent; (2) under the supposition E is an AL space, if \left(x_n, \mathscrF_n\right)_n>1 is an E+- valued superpramart, then TL xn a. e. exists.

     

/

返回文章
返回