基于M-估计的误差密度估计
Error Density’s Estimates Based on M-Estimates
-
摘要: 对于线性模型Yi=x'iβ十ei,i=1,2,...,eii= 1∞i.i.d.,e1有未知密度函数f(x),本文基于β的M-估计的残差:\widehate_i=Y_i-x_i^\prime \beta, i=1,2, \cdots, n,其中\widehat\beta为β的M-估计,用 \widehatf_n(x)=\frac12 n a_n \sum_i=1^n I\left(x-a_n \leq \widehate_i \leq x+a_n\right)估计f(x),得到了这种估计的强收敛速度,一致强收敛速度,L1-模相合性,渐近正态性,重对数律。Abstract: For linear model Yi=x'iβ十ei,i=1,2,..., the error sequence eii= 1∞i.i.d., e1 has an unknown density f(x). In this paper, we estimate f(x) by \widehatf_n(x)=\frac12 n a_n \sum_i=1^n I\left(x-a_n \leq \widehate_i \leq x+a_n\right) and obtain the strong convergence rate, the strong uniform convergence rate, L1-norm consistency asymptotic normality, law of iterated logarithm.181