污染数据回归分析中估计的强相合性
Strong Consistency of Estimates in Regression Analysis for Contamination Data
-
摘要: 考虑简单回归模型(Ⅰ)yi=α+xiβ+εi,i=1,2,…,n,与半参数回归模型(Ⅱ)yi=xiβ+g(ti)+εi,i=1,2,…,n其中 Eεi=0, Eεi2=σ12,假定y1, y2,…, yn受到另一独立同分布随机变量序列μ1,μ2,…,μn的污染,且仅能观察到污染数据,μi与{yi}独立。对文1,2中给出的α,β,g(·)及污染参数v的估计,本文在适当的条件下,证明了它们的强相合性。Abstract: Consider the simple regraseion model (Ⅰ)yi=α+xiβ+εi,i=1,2,…,n, and the semipara-metric regression model (Ⅱ)yi=xiβ+g(ti)+εi,i=1,2,…,n. Where Eεi=0, Eεi2=σ12. Assume that y1, y2,…, yn are contammated by another i.i.d. random variable sequence μ1,μ2,…,μn, and only the contaminated data are observable, where μi is independent of yi . For the estimates of α,β,g(·) and contammation parameter v given in 1 and 2, we establish their strong consistency under suitable conditions