一类椭球等高矩阵分布的矩
ON THE MOMENTS OF A KIND OF ELLIPTICAL MATRIX DISTRIBUTIONS
-
摘要: 设X是m×n随机矩阵,n≥m,S=XX’,Om是所有m×m正交阵的集合。如果对任意的Γ∈Om,\Gamma X \stackreld= X 则对任意整数k E(Sk)=ckIm cov(vec Sk)=αkIm2+βkKm2+γkQm2其中 ck、αk、βk、和γk是某些常数; Ii,l×l单位阵; \beginaligned K_m 2 & =\sum_i j=1^m H_i \otimes H_i j^\prime ; \\ Q_m^2 & =\sum_i j=1^m H_i j \otimes H_i j ;\endaligned;而 Hij表示这样的m×m矩阵,除了hij=1外,其它元素为零, \otimes 表示 Kronecker积。另外,本文也求出了一些特殊的αk,βk,γk和ck的值。Abstract: Let X be an m×n random matrix, n≥m and S=XX’. If Γ∈Om,\Gamma X \stackreld= X then for any integer k we get E(Sk)=ckIm cov(vec Sk)=αkIm2+βkKm2+γkQm2 Where αk,βk,γkandck are some constants, \beginaligned K_m 2 & =\sum_i j=1^m H_i \otimes H_i j^\prime ; \\ Q_m^2 & =\sum_i j=1^m H_i j \otimes H_i j ;\endaligned here Hij denotes the m×m matrix with hij=1 and all other elements zero and \otimes denotes Kroncker producte. Some special αk,βk,γkandck are found.