一类椭球等高矩阵分布的矩

ON THE MOMENTS OF A KIND OF ELLIPTICAL MATRIX DISTRIBUTIONS

  • 摘要:Xm×n随机矩阵,nm,S=XX’,Om是所有m×m正交阵的集合。如果对任意的ΓOm,\Gamma X \stackreld= X 则对任意整数k ESk)=ckIm cov(vec Sk)=αkIm2+βkKm2+γkQm2其中 ckαkβk、和γk是某些常数; Ii,l×l单位阵; \beginaligned K_m 2 & =\sum_i j=1^m H_i \otimes H_i j^\prime ; \\ Q_m^2 & =\sum_i j=1^m H_i j \otimes H_i j ;\endaligned;而 Hij表示这样的m×m矩阵,除了hij=1外,其它元素为零, \otimes 表示 Kronecker积。另外,本文也求出了一些特殊的αk,βk,γkck的值。

     

    Abstract: Let X be an m×n random matrix, nm and S=XX’. If ΓOm,\Gamma X \stackreld= X then for any integer k we get ESk)=ckIm cov(vec Sk)=αkIm2+βkKm2+γkQm2 Where αk,βk,γkandck are some constants, \beginaligned K_m 2 & =\sum_i j=1^m H_i \otimes H_i j^\prime ; \\ Q_m^2 & =\sum_i j=1^m H_i j \otimes H_i j ;\endaligned here Hij denotes the m×m matrix with hij=1 and all other elements zero and \otimes denotes Kroncker producte. Some special αk,βk,γkandck are found.

     

/

返回文章
返回