Convergence for Kernel Estimation of Error Density in M-Estimator
-
摘要: 线性模型Yi=$x_i^{\prime} \beta+e_i$,i=1,2,…,其中$\left\{e_i\right\}_{i=1}^{\infty}$ i.i.d.有未知密度 f(x).本文讨论了在对β作一般M-估计后,基于残差做出的误差密度核估计的相合性.在比文献弱的条件下,证明了误差密度核估计的逐点弱相合、逐点强相合和一致强相合。Abstract: Linear lnodelYi=$x_i^{\prime} \beta+e_i$,i=1,2,…, where$\left\{e_i\right\}_{i=1}^{\infty}$ i.i.d. with unknown density f(x). In this paper, weconsider some converegence of kernel estimation of error density based on the residuals of M-estimation. Underweaker assumptions than references, the article proves the weak local convergence, the strong loca1 convergence and the strong uniform convergence of kernel estimation of error density.
-
计量
- 文章访问数: 9
- HTML全文浏览量: 0
- PDF下载量: 4