两指标随机过程的最优停止的构造

THE STRUCTURES OF OPTIMAL STOPPING FOR TWO INDEXES STOCHASTIC PROCESSES

  • 摘要: 本文研究了离散两指标随机过程X=(Xz,Fz,zN2)的最优停止的结构及X的Snell包络的渐近算法。首先证明了在条件(A+)下:Γ=(γz,Fz,zN2)是控制X的最小F正则上鞅,这里r_n=\underset\sigma \in \Sigma, \sigma>\mathbbF\operatornameess \sup E\left(X_\sigma \mid \mathscrF_n\right)。然后根据最优原理,利用X的Snell包络构造出最优策略。从而得出了报酬过程为X=(Xz,Fz,zN2)的最优停点的具体结构。最后证明了X的Snell包络的三重极限定理。

     

    Abstract: In this paper, it is researched that the structure of discrete two indexes stochastic processes X=(Xz,Fz,zN2) and the asymptotic arithmetic of Shell’s envelope of X. At first, under the condition (A+), it is proved that Γ=(γz,Fz,zN2) is minimal F-regul alsupermatingale above X, wherer_n=\underset\sigma \in \Sigma, \sigma>\mathbbF\operatornameess \sup E\left(X_\sigma \mid \mathscrF_n\right). Then optimal tactics is structured by Snell’s envelope of X and optimal principle. Therfore, the structure of optimal stopping for payoff processes X=(Xz,Fz,zN2) are obtained. At last, three limit theorem for Snell’s envelope of X is proved.

     

/

返回文章
返回