Abstract:
Let
B be a real separable Banach space and
X a
B-valued random variable. Set \mathbbN^d=\left\\barn=n_1, \cdots, n_d\right) ;
ni=1,2,…,
i=1,…,
d andT_\theta^d=\left\\barn \in \mathbbN^d ; \barn=\left(n_1, \cdots, n_d\right)\right.,
θni≤
ny≤
θ-1n4,
i≠
j,
i,
j=1,…,
d, where
d≥2 and 0<
θ<1. In this paper, we discuss four forms of the
LIL for
B-valued i.i.d.r.v.’ s indexed by
Tθi (i.e.
BLIL(θ,α)1,
BLIL(θ,d)2,
CLIL(θ.D)1and
GLIL(θ,d)2) and obtain necessary and sufficient conditions for
X to satisfy, respectively,
BLIL(θ,α)1,
BLIL(θ,d)2,
CLIL(θ.D)1and
GLIL(θ,d)2.