球对称分布下的二次型

QUADRATIC FORMS UNDER SPHERICAL DISTRIBUTIONS

  • 摘要: 设 \undersetN \times PX=\binomX_(1)X_(2) 为球对称分布的矩阵,本文将证实如下命题的等价性:1.X(1)X(2)相互独立;2.X(1)X(1)X(2)X(2)相互独立;3.vecX依 N(0, \nabla \otimes I) 分布,V是某个非负定阵。最后,在PX=0)<1条件下,我们将关于二次型的Cochran定理推广至更一般的情形。

     

    Abstract: Let \undersetN \times PX=\binomX_(1)X_(2) be a spherically Symmetric distributed matrix, we shall prove the equivalence of the following propositions: 1. X(1)andX(2)are mutually independent; 2. X'(1)X(1)andX'(2)X(2) are mutually independent; 3. Vec X is distributed as N(0, \nabla \otimes I) for some non-negative matrix V. At last, under the ristriction PX=0)<1 we extend the classical Cochran’s theorem of quadratic formt to a more general fashion.

     

/

返回文章
返回