球对称分布下的二次型

邓炜材

球对称分布下的二次型

QUADRATIC FORMS UNDER SPHERICAL DISTRIBUTIONS

  • 摘要: 设$ \underset{N \times P}{X}=\binom{X_{(1)}}{X_{(2)}}$ 为球对称分布的矩阵,本文将证实如下命题的等价性:1.X(1)X(2)相互独立;2.X(1)X(1)X(2)X(2)相互独立;3.vecX依 $N(0, \nabla \otimes I)$ 分布,V是某个非负定阵。最后,在PX=0)<1条件下,我们将关于二次型的Cochran定理推广至更一般的情形。
    Abstract: Let $ \underset{N \times P}{X}=\binom{X_{(1)}}{X_{(2)}}$ be a spherically Symmetric distributed matrix, we shall prove the equivalence of the following propositions: 1. X(1)andX(2)are mutually independent; 2. X'(1)X(1)andX'(2)X(2) are mutually independent; 3. Vec X is distributed as $N(0, \nabla \otimes I)$ for some non-negative matrix V. At last, under the ristriction PX=0)<1 we extend the classical Cochran’s theorem of quadratic formt to a more general fashion.
计量
  • 文章访问数:  8
  • HTML全文浏览量:  0
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  1985-10-21

目录

    /

    返回文章
    返回