截断数据模型中的两阶段抽样序贯密度估计

TWO-STAGE SAMPLING SEQUENTIAL DENSITY ESTIMATION FROM CENSORED DATA

  • 摘要:X1,X2,…是iid随机变量序列,满足分布F密度函数,Xi被随机变量Yi右截断,而Yi是iid随机变量,且与Xi独立。我们仅能观察到样本 Zi=min(Xi,Yi),δi=IXiYi)估计量fn和\hatf_n是基于KM估计量的f的核型估计,在本文中,我们基于fn和\hatf_n分别构造f的两阶段抽样的序贯固定长度2d,渐近置信系数1-α。(0<α<1)的置信区间。并讨论了停时的渐近性质。

     

    Abstract: Letx1,x2,, …be a sequence of i. i. d. random oariables with distribution function F and density function f. The Xi are censored on the right by Yi, where the Yi are iid. random variables and independent of Xi. We only observe the sample Zi=min(Xi,Yi),δi=IXiYi) The estimator fn(\hatf_n) based on the Kaplan-Meier estimator is the kernel-type estimate of f from Z1, …, Zn. In this paper, we construct a fixed-width sequantial confidence interval based on fn(\hatf_n) Some asymptotic properties are discussed, and we give an asymptotically efficient two-stage procedure.

     

/

返回文章
返回