双向删失数据情形下的置信限

CONFIDENCE LIMITS IN THE CASE OF DOUBLE CENSORING

  • 摘要:X1,X2,…,Xn是概率空间(Ω,f,Pe)(θ∈Θ)上的独立同分布随机变量列,共同分布函数是Fx,θ).(F(0,θ)=0).给定正数t1,…,tn及函数gθ):Θ→-∞,∞.设Yi=lXi>ti)(i=1,2,…,n),这里lA是集合A的示性函数。本文中我们给出了gθ)的基于观测值Y=(Y1,Y2,…,Yn)的最优的置信下限,当\Theta=(\underline\theta, \bar\theta) \quad(-\infty \leqslant \underline\theta<\bar\theta \leqslant \infty)而且Fti,θ)是θ的严格减函数时,我们得到了计算最优置信限的有效方法。

     

    Abstract: Let X_1, X_2, \cdots, X_n be a sequence of random variables which are independently and identioally distribated on probability spase \left(\Omega, \mathscrF, P_\theta\right)(\theta \in \Theta) with distribution function F(x, \theta). Given t_1, t_2, \cdots, t_n (positive numbers) and g(\theta): \Theta \rightarrow-\infty, \infty. Let Y_i=I\left(X_i>t_i\right) \quad(i=1, \cdots, n), where I(A) is an indicator of the set A.
    In the present paper, we give the best lower confidence limits for g(\theta) based on observed Y=\left(Y_1, Y_2, \cdots, Y_n\right). When \Theta=(\underline\theta, \bar\theta)(-\infty \leqslant \underline\theta<\bar\theta \leqslant \infty) and F\left(t_i, \theta\right) is strictly deoreasing for \theta, we obtain an efficient method for constructing the best confidence limit.

     

/

返回文章
返回