截尾样本下回归函数改良核估计的强相合性

Strong Consistency of Improved Kernel Estimate of Regression Function with Censored Data

  • 摘要: 设(Xi,Yi),i=1,…,n是从取值于Rd×R1的随机向量(XY)中抽取的i.i.d.样本,E(|Y|)<∞,而以m(x)=E(Y|X=x)表示回归函数.在截尾情况下,观察到的不是诸Yi本身,而是Z_i=\min \left(Y_i, T_i\right)及\delta_i=I\left(Y_i \leq T_i\right) 其中Ti是与(Xi,Yi)独立的随机变量,,i=1,…,nT的分布未知时,在一定条件下,得到了回归函数改良估计的强合性。

     

    Abstract: Let (X, Y) be a Rd×R1-Valued random vector with E(|Y|) < ∞ and mx) = E(Y|X = x) be the regression of Y with respect to X. Suppose that (Xi,Yi),i=1,…,n are i.i.d. samples drawn from (X, Y), it is desired to estimate mx) based on these samples. In this paper we discuss the case that Yi are censored by random variables Ti. It means that we can only observe Z_i=\min \left(Y_i, T_i\right) and \delta_i=I\left(Y_i \leq T_i\right). We always suppose that Ti i.i.d. and independent of (Xi,Yi). We obtain strong cosistency of regression function.

     

/

返回文章
返回