Abstract:
Consider linear model
Y=(
Y1,…,
Yn)'=
Xβ+
ε=
Xβ+(
ε1,…,
εn)',where
X be a
n×
p known design matrix,
β=(
β1,…,
βp)', σ
2>0 be unknown parameters,
ε1,…,
εn be independent,
Eεi=
Eεi3=0,
Eε42=σ
2,
Eεi4=3σ
4,
i=1,2,…,
n. In this parper, we give out Some necessary and Sufficient conditions for estimate(
AY,
Y'BY) of (
Sβ, σ
2) to be admissible in the class of \mathscrC \times \mathscrD=\left\\left(C Y, Y^\prime D Y\right)\right.:
C be a ×
n constant matrix,
D be a
n×
n non-negative definite constant matrix under matrix \operatornameloss\binomd_1-S \betad_2-\sigma^2\binomd_1-S \betad_2-\sigma^2^\prime or \binom\fracd_1-S \beta\sigma\fracd_2-\sigma^2\sigma^2\binom\fracd_1-S \beta\sigma\fracd_2-\sigma^2\sigma^2^\prime.