回归函数的投影寻踪逼近的Lp收敛性

田铮, 肖华勇

回归函数的投影寻踪逼近的Lp收敛性

基金项目: 

航空科学基金.

详细信息
  • 中图分类号: O211.7

The Lp Convergence for Projection Pursuit Regression

  • 摘要: 投影寻踪是用来处理高维数据得一类新型统计方法.由于不知道 $\mathrm{E}\left(r_m(x) \mid \alpha_m^T x\right)$ 的具体形式,给投影寻踪回归的应用带来一定的困难,为此,作者曾证明岭函数为多项式形式的投影寻踪回归的 L2收敛性[3],本文在文献[3]的基础上进一步证明了回归函数投影寻踪逼近的Lp收敛性.
    Abstract: Projection Pursuit (PP) is a new statistical method which can be used to handle with high- dimensional data. However, no specific forms of the ridge function for projection pursuit regression (PPR) have been proposed, so it is difficult to employ the PPR to solve practical problems. The authors have proposed polynomials as ridge function and proved the L2 convergence for PPR [3]. Furthermore, we prove the Lp convergence of projection pursuit approximation for regression function in this paper.
计量
  • 文章访问数:  8
  • HTML全文浏览量:  0
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  1995-07-16
  • 修回日期:  2000-01-20

目录

    /

    返回文章
    返回