Abstract:
Consider the linear model.
Y=
Xβ+
e where
E(
e)=0,cov(
e)=σ
2∑,∑≥0. It is well known that \hat\mu=
X(
X'X)-
X'Yand
μ*=
X(
X'T-
X)-
X'T-
Y are respectively the least squares and the best linear unbiased estimators of
μ=
Xβ, where
T=∑+
XUX',
U is a symmetric matrix satisfying Rank(
T)=Rank(∑
X) and
T≥0. In this paper, we obtain that \left\|\hat\mu-\mu^*: \leqslant \frac\lambda_1-\lambda_i2 \sqrt\lambda_\lambda_2^\lambda_k\right\|Y-\hat\mu \|_2 where
λ4=
ch4(
T),
i=1,2,…,
n,
λ1≥…≥
λn≥0.
k=Rank(
X), \left\|\alpha^\prime\right\|_2=\left(\alpha^\prime \alpha^\prime\right)^\frac12 and the upper bounds to \left\|\operatornamecov(\hat\mu)-\operatornamecov\left(\mu^*\right)\right\|_n, \quad\left\|P T^2 P-\left(P P_2 r P\right)^2\right\| and \left\|_i\left(\cot ^+\left(\mu^*\right)\right)^\frac12 \operatornamecov(\hat\mu)\left(\cot ^+\left(\mu^*\right)\right)^\frac12\right\|_2, where \forall A \|_0=\left(\operatornametr\left(A^\prime A\right)^\frac\pi2\right)^\frac16 \cdot \delta \geqslant 1.