线性模型中均值向量的LSE和BLUE的偏差估计

THE ESTIMATION OF THE DEVIATION BETWEEN THE LEAST SQUARES AND THE BEST LINEAR UNBIASED ESTIMATORS OF THE MEAN VECTOR IN A LINEAR MODEL

  • 摘要: 对于线性模型 Y=+e,Ee)=0,cov(e)=σ2∑,∑≥0,μ=的LSE和BLUE分别为\hat\mu=XX'X)-X'Yμ*=XX'T-X)-X'T-Y,其中T=∑+XUX',U是对称阵且使Rank(T)=Rank(∑X)和T≥0,本文证明了\left\|\hat\mu-\mu^*: \because \frac\lambda_1-\lambda_\lambda_22 \sqrt\lambda_1 \lambda_\mathrmk\right\| Y-\hat\mu \|_2这里λ4=ch4T),i=1,2,…,n,λ1≥…≥λn≥0。k=Rank(X),\left\|\alpha^\prime\right\|_2=\left(\alpha^\prime \alpha^\prime\right)^\frac12,并且给出了\left\|\operatornamecov(\hat\mu)-\operatornamecov\left(\mu^*\right)\right\|_n, \quad\left\|P T^2 P-\left(P P_2 r P\right)^2\right\|和\left\|_i\left(\cot ^+\left(\mu^*\right)\right)^\frac12 \operatornamecov(\hat\mu)\left(\cot ^+\left(\mu^*\right)\right)^\frac12\right\|_2的上界,这里\forall A \|_0=\left(\operatornametr\left(A^\prime A\right)^\frac\pi2\right)^\frac16 \cdot \delta \geqslant 1.。

     

    Abstract: Consider the linear model. Y=+e where Ee)=0,cov(e)=σ2∑,∑≥0. It is well known that \hat\mu=XX'X)-X'Yand μ*=XX'T-X)-X'T-Y are respectively the least squares and the best linear unbiased estimators of μ=, whereT=∑+XUX',U is a symmetric matrix satisfying Rank(T)=Rank(∑X) and T≥0. In this paper, we obtain that \left\|\hat\mu-\mu^*: \leqslant \frac\lambda_1-\lambda_i2 \sqrt\lambda_\lambda_2^\lambda_k\right\|Y-\hat\mu \|_2 where λ4=ch4T),i=1,2,…,n,λ1≥…≥λn≥0.k=Rank(X), \left\|\alpha^\prime\right\|_2=\left(\alpha^\prime \alpha^\prime\right)^\frac12 and the upper bounds to \left\|\operatornamecov(\hat\mu)-\operatornamecov\left(\mu^*\right)\right\|_n, \quad\left\|P T^2 P-\left(P P_2 r P\right)^2\right\| and \left\|_i\left(\cot ^+\left(\mu^*\right)\right)^\frac12 \operatornamecov(\hat\mu)\left(\cot ^+\left(\mu^*\right)\right)^\frac12\right\|_2, where \forall A \|_0=\left(\operatornametr\left(A^\prime A\right)^\frac\pi2\right)^\frac16 \cdot \delta \geqslant 1.

     

/

返回文章
返回