B值混合随机变量的强大数定律

Strong Law of Large Numbers for B-Valued Mixing Random Variables*

  • 摘要: 本文在Banach空间B是p可光滑(1<p\leq2)的条件下获得了B值弱相依随机变量序列正则和极限点集的上界\bd 作为应用, 由B值y-混合随机变量序列的强大数定律刻划了Banach空间的p可光滑性, 在不要求混合系数\varphi_n和\psi_n趋于0而是在\inf\limits_n\geq1\varphi_n=0或\inf\limits_n\geq1\psi_n=0的条件下, 获得了B值相依随机变量序列有关强大数定律的一些结果.

     

    Abstract: In this paper, we obtain the almost sure bound of normal sum of B-valued weakly dependent random variables under the assumption that Banach space B is p-smoothable (1<p\leq2). As its application, we characterize p-smoothness of Banach space through the strong law of large numbers of B-valued y-mixing random variables, and obtain some results on the strong law of large numbers for B-valued dependent random variables without assumption on rate of tending to zero of \varphi and \psi-mixing parameters \varphi_n and \psi_n but under the assumption that \inf\limits_n\geq1\varphi_n=0 or \inf\limits_n\geq1\psi_n=0 respectively.

     

/

返回文章
返回