方差分量模型协方差阵的谱分解

Spectral Decomposition Method for the Covariance Matrix of Variance Components Model

  • 摘要: 本文对平衡方差分量模型, 给出了其协方差阵的新的谱分解算法. 该方法的特点是计算简单, 易于理解, 无须复杂的数学知识. 且能够明确显示协方差阵的不同特征值的个数, 以及谱分解中不同特征值所对应的投影阵的显式表示. 基于新方法我们进一步研究了平衡方差分量模型的一些相关性质. 本文还研究了一般方差分量模型, 我们首先定义了一般方差分量模型协方差阵的简单谱分解, 给出了一般方差分量模型可以进行简单谱分解的充要条件, 并研究了协方差阵简单谱分解的一些性质. 对于协方差阵可以进行简单谱分解的方差分量模型, 本文研究了简单谱分解在其统计推断中的应用.

     

    Abstract: For the balanced variance components model, the main contribution of this thesis is to provide a new spectral decomposition method for the covariance matrix. The computation of this new method is simple, it can give the number of different eigenvalues of covariance matrix and closed form of the projective matrices corresponding to its eigenvalues. Based on this new method we discuss several properties of variance components model. Further more, this thesis studies general variance components model. Firstly, we give the definition of simple spectral decomposition and obtain a necessary and sufficient condition of existence of simple spectral decomposition, then discuss some characters. To this kind of models, the application in statistical inference of simple spectral decomposition is also discussed.

     

/

返回文章
返回