相依MA(\infty)误差下半参数模型小波估计的收敛速度

Convergence Rate of Wavelet Estimator in SemiparametricModels with Dependent MA(\infty) Error Process

  • 摘要: 考虑半参数回归模型y_i=x_i\beta+g(t_i)+V_i (1\le i\le n), 其中(x_i,t_i)是已知的设计点, 斜率参数\beta是未知的, g(\cdot)是未知函数, 误差V_i=\tsm^\infty_j=-\inftyc_je_i-j, \tsm^\infty_j=-\infty|c_j|<\infty并且e_i是负相关的随机变量. 在适当的条件下, 我们研究了\beta与g(\cdot)小波估计量的强收敛速度. 结果显示g(\cdot)的小波估计量达到最优收敛速度. 同时, 对\beta小波估计量也作了模拟研究.

     

    Abstract: Consider semiparametric regression model y_i=x_i\beta+g(t_i)+V_i (1\le i\le n), where the known design points (x_i,t_i), the unknown slope parameter \beta, and the nonparametric component g are non-random, and the correlated errors V_i=\tsm^\infty_j=-\inftyc_je_i-j with \tsm^\infty_j=-\infty|c_j|<\infty and e_i are negatively associated random variables. Under appropriate conditions, we study rates of strong convergence for wavelet estimators of \beta and g(\cdot). The results show that the wavelet estimator of g(\cdot) can attain the optimal convergence rate. Finite sample behavior of the estimator of \beta is investigated via simulations too.

     

/

返回文章
返回