关于加权不变原理的一个注记

A Note on Weighted Invariance Principle

  • 摘要: 在这个注记中我们将关于平稳过程的Davydov弱不变原理推广到长记忆无穷滑动平均过程的加权部分和过程, 文中还给出了一些不限于滑动平均过程的一般长记忆时间序列的加权部分和过程增量的二阶矩的边界, 这些边界将有助于证明这些过程关于一致度量的胎紧性. 作为连续映射定理的一个结果, 我们也导出了一些随机变量函数的概率边界.

     

    Abstract: In this note we generalize Davydov's\ucite1 weak invariance principle for stationary processes to a weighted partial sums of long memory infinite moving average processes. This note also contains some bounds on the second moments of increments of some weighted partial sum processes of a general long memory time series, not necessarily moving average type. These bounds are useful in proving the tightness in uniform metric of these processes. As a consequence of continuous mapping theorem, the probability bounds on certain functions of random variables can be established.

     

/

返回文章
返回