一类Sparre Andersen风险模型的Gerber-Shiu函数

The Gerber-Shiu Function for a Sparre Andersen\\Risk Model

  • 摘要: 本文考虑了一类相邻两次索赔的时间间隔服从Erlang(n)和Erlang(m)的混合分布的Sparre Andersen风险模型. 主要目的是研究Gerber-Shiu函数\phi_\delta(u), 首先证明了\phi_\delta(u)满足一个高阶的积分微分方程, 然后讨论了广义Lundberg方程根的性质, 在此基础上导出了\phi_\delta(u)的拉普拉斯变换并且证明了\phi_\delta(u)满足一个更新方程, 最后给出了一个例子.

     

    Abstract: In this paper, we consider a Sparre Andersen risk model in which the claim inter-arrival distribution is a mixture of an Erlang(n) distribution and an Erlang(m) distribution. Our purpose is to study the Gerber-Shiu function \phi_\delta(u). First, we show that \phi_\delta(u) satisfies a higher-order integro-differential equation, and then we discuss the roots of the generalized Lundberg's equation. On this basis, we drive the Laplace transform of \phi_\delta(u) and prove that \phi_\delta(u) satisfies a renewal equation. Finally, we consider an example.

     

/

返回文章
返回