Z2上相依渗流开簇的极限定理

Limit Theorems for the Size of the Clusters of Dependent Percolation Process on Z2

  • 摘要: 中心极限定理, 大偏差定理和大数定律等极限定理在概率论中起着很重要的角色. 本文我们研究\mathbbZ^2上一类相依渗流模型. 对此模型, 我们不仅证明了其无穷开簇的存在唯一性, 而且得到了关于格点盒子类极大开簇的中心极限定理

     

    Abstract: Limit theorems such as central limit theorems, large deviations and large number laws play an important role in probability theory. In this paper, we consider dependent percolation on the planar lattice \mathbbZ^2. For this model, we not only prove the existence and uniqueness of the infinite cluster but also prove the central limit theorems respectively for the size of biggest cluster and the size of the cluster at the origin in the lattice boxes

     

/

返回文章
返回