高维部分线性模型的变量选择和估计

Variable Selection and Estimation in High-Dimensional Partially Linear Models

  • 摘要: 考虑高维部分线性模型, 提出了同时进行变量选择和估计兴趣参数的变量选择方法. 将Dantzig变量选择应用到线性部分及非参数部分的各阶导数, 从而获得参数和非参数部分的估计, 且参数部分的估计具有稀疏性, 证明了估计的非渐近理论界. 最后, 模拟研究了有限样本的性质

     

    Abstract: In this paper, we propose an approach for achieving simultaneously variable selection and estimation for the linear and nonparametric components in high-dimensional partially linear models. We use Dantzig selector, applied to the linear part and various derivatives of nonparametric component, to achieve sparsity in the linear part and produce nonparametric estimators. Non-asymptotic theoretical bounds on the estimator error are obtained. The finite sample properties of the proposed approach are investigated through a simulation study

     

/

返回文章
返回