Threshold分红策略下带干扰的两类索赔风险模型的Geber-Shiu函数

The Gerber-Shiu Penalty Functions for a Perturbed Risk Model with Two Classes of Risks and a Threshold Dividend Strategy

  • 摘要: 本文研究了在threshold分红策略下带干扰的两类索赔风险模型的Geber-Shiu函数. 这里假设两个索赔计数过程为独立的更新过程, 其中一个为Poisson过程另一个为时间间隔服从广义Erlang(2)分布的更新过程. 本文得到了threshold分红策略下Gerber-Shiu函数所满足的积分--微分方程及其边界条件. 最后, 本文指出threshold分红策略下Gerber-Shiu函数可以由不分红(即: )时所对应的Geber-Shiu函数和一个齐次积分--微分方程的线性独立解表示出来.

     

    Abstract: In this paper, we study the perturbed risk model with two classes of claims and a threshold dividend strategy. We assume that the two claim counting processes are, respectively, Poisson and renewal process with generalized Erlang(2) inter-claim times. Integro-differential equations and certain boundary conditions satisfied by the Gerber-Shiu penalty functions are derived in terms of matrices. Finally, we show that the closed form for the Gerber-Shiu penalty functions can be expressed by the Gerber-Shiu penalty functions without dividend payments and the matrix composed of two linearly independent solutions to the corresponding homogeneous integro-differential equations.

     

/

返回文章
返回