Abstract:
In this paper we use stochastic optimal control theory to investigate a dynamic portfolio selection problem with liability process, in which the liability process is assumed to be a geometric Brownian motion and completely correlated with stock prices. We apply dynamic programming principle to obtain Hamilton-Jacobi-Bellman (HJB) equations for the value function and systematically study the optimal investment strategies for power utility, exponential utility and logarithm utility. Firstly, the explicit expressions of the optimal portfolios for power utility and exponential utility are obtained by applying variable change technique to solve corresponding HJB equations. Secondly, we apply Legendre transform and dual approach to derive the optimal portfolio for logarithm utility. Finally, numerical examples are given to illustrate the results obtained and analyze the effects of the market parameters on the optimal portfolios.