带杀死的线性生灭过程的拟平稳分布的吸引域

Domain of Attraction of the Quasi-Stationary Distribution for the Linear Birth and Death Process with Killing

  • 摘要: Karlin和Tavar曾在1982年的一篇论文中对带杀死的线性生灭过程的模型进行了研究. 设带杀死的线性生灭过程的状态空间为非负整数. 本文主要关注过程的拟平稳分布的以下三个方面的问题. 第一个问题是求出的衰减参数. 我们得到, 这里, 和分别是该过程在状态的出生率、死亡率和杀死率. 第二个问题是, 证明该过程的拟平稳分布的唯一性, 并且这个拟平稳分布是几何分布. 有趣的是, 不带杀的生灭过程会存在一族拟平稳分布, 但是带杀的生灭过程却只存在唯一的拟平稳分布. 最后一个问题是解决吸引域问题. 我们得出任意初始分布都在的唯一的拟平稳分布的吸引域里面. 值得一提的是, 我们研究本文的目的在于关注人口基因问题.

     

    Abstract: The model of linear birth and death processes with killing has been studied by Karlin and Tavar (1982). This paper is concerned with three problems in connection with quasi-stationary distributions (QSDs) for linear birth-death process with killing on a semi-infinite lattice of integers. The first problem is to determine the decay parameter of . We have where , , are the birth, death and killing rates in state , respectively. The second one is to prove the uniqueness of the QSD which is a geometric distribution. It is interesting to find that the unkilled process has a one-parameter family of QSDs while the killed process has precisely one QSD. The last one is to solve the domain of attraction problem, that is, we obtain that any initial distribution is in the domain of attraction of the unique QSD for . Our study is motivated by the population genetics problem.

     

/

返回文章
返回