ASIS算法是否应该广泛采用?
Should We Use ASIS?
-
摘要: 本文将辅助--充分交织策略, 即Yu和Meng (2011)中提到的ASIS算法, 应用于Gibbs抽样算法中以提高两个方差参数的收敛性. 我们通过对潜在规模缩减因子(PSRF)、轨迹图及后验估计比较了ASIS算法与普通Gibbs抽样算法的性能, 其中一个参数的收敛性有了很大的提高, 但另一个参数没有很明显的提高. 然而, 由于ASIS算法相与普通的Gibbs抽样算法相比极大地减少了为达到收敛所需要的循环次数, 整体的抽样性能得到了极大的提高.Abstract: This paper improves the convergence of two variance parameters in He and Sun (2000) by applying the ancillarity-sufficiency interweaving strategy (ASIS in Yu and Meng (2011)) algorithm to the Gibbs sampling steps. The performance of the ASIS algorithm is compared with the regular Gibbs sampling by the potential scale reduction factor, trace plots and posterior estimates. The convergence of one parameter improves greatly, but the other one does not have a very significant improvement. However, the overall sampling performance has improved greatly since it needs much fewer iterations than using regular Gibbs sampling to achieve convergence.