极差调节的局部惩罚样条回归方法

Local Penalized Spline Regression Model Based on Range

  • 摘要: 在惩罚样条回归模型中, 根据截断幂基函数系数的直观意义, 以结点两边数据点极差的线性递减函数作为局部惩罚权重, 构造了一种新的局部惩罚样条回归模型. 不同于整体惩罚样条, 该方法使得当数据点集在局部具有较大的波动性时, 能给予拟合曲线较小的惩罚, 从而能更好地控制曲线在拟合优度与光滑度之间的平衡. 模拟结果显示, 当数据具有空间异质性时, 采用该方法的回归模型相比整体惩罚模型有更好的信息准则得分.

     

    Abstract: Inspired by intuitive meanings of truncated power basis's coefficients, the local penalization based on range's linear decreasing function is given in penalized spline regression model. This method gives less penalization to fitting curve where data is with more volatility, which makes fitted curve controls tradeoff between goodness-of-fit and smoothness better. Simulations show that regression models with local penalized spline obtain lower information rules' scores than global penalized spline when the data is with heteroskedasticity.

     

/

返回文章
返回