Abstract:
In survival analysis, most existing approaches for analysing right-censored failure time data assume that the censoring time is independent of the failure time. However, investigators often face problems involving dependent censoring, i.e., failure time and censoring time are possibly dependent and they may be censored one another, especially in clinical trials. Without accounting for such dependence, survival distributions cannot be estimated consistently. Numerous attempts to model this dependence have been made. Among them, copula models are of particular interest because of their simple structure. Proportional hazard model analysis for informative right-censored data has been discussed in this paper. An Archimedean copula is assumed for the joint distribution function of failure time and censoring time variables. Under the conditions of identifiability of the parameter of the Archimedean copula, the maximum likelihood estimators of the parameter of Archimedean copula, the parameters and the cumulative hazard function of PH model are worked out. Extensive simulation studies show that the feasibility of the proposed method and the consistency of the estimators.