Abstract:
Suppose that
X1,
X2, …are independent identically distributed random variables,
EX1=0, \barX_n=\sum_i=1^n X_i / n. Let
Cn,
n≥1 and
αn,
n≥1 be two sequences of non-negative numbers, at least one of which is bounded. It is proved that 1. The necessary and sufficient condition for \sum_n=1^\infty C_n \sqrtn^-\alpha_n<\infty \Leftrightarrow \sum_n=1^\infty C_n\left|\barX_n\right|^\alpha_n \mid<\infty.is 0<
EX12<∞. 2. Even when
EX12=∞, from \sum_n=1^\infty C_n \sqrtn^-\alpha_n=\infty it follows follows that \sum_n=1^\infty C_n\left|\barX_n\right|^a_n=\infty, a.s..