在条件\liminf _\boldsymboln \rightarrow \infty \mathrmP\left(\boldsymbolX_\boldsymboln=0\right)>0下的一类独立随机变量和的收敛定理
Theorems on Convergence of Sums of Independent Random Variables under the Condition \liminf _\boldsymboln \rightarrow \infty \mathrmP\left(\boldsymbolX_\boldsymboln=0\right)>0
-
摘要: 设{Xn,n≥ 1}是一独立随机变量序列.受概率数论中Erdös猜想的启发,我们研究了在条件\liminf _\boldsymboln \rightarrow \infty \mathrmP\left(\boldsymbolX_\boldsymboln=0\right)>0下的独立项级数\sum_n=1^\infty X_n的a.s,收敛性,并且获得了该级数a.s.收敛的两个充分必要条件和一个充分条件.这些定理分别改进了文献3、5中关于Erdös猜想的研究结果。Abstract: Let Xn,n≥ 1 be a sequence of independent random variables. Motivated by a conjecture of Erdos in probabilistic number theory, we assume \liminf _\boldsymboln \rightarrow \infty \mathrmP\left(\boldsymbolX_\boldsymboln=0\right)>0 and investigate the a.s. convergence of sum for \sum_n=1^\infty X_n. In this paper, we obtain two "sufficient and necessary" conditions and one "sufficient" condition of the a.s. convergence of sum for \sum_n=1^\infty X_n. In particular, we have improved the related results in 3. 5.