在一类特殊的随机截断下分布函数的估计

THE ESTIMATION OF DISTRIBUTIONS UNDER A PARTICULAR RANDOM CENSORING

  • 摘要: 本文讨论了在一类特殊的随机截断下分布函数的估计及其渐近正态性.

     

    Abstract: Let X1, X2,…,XN be i.i.d. random variables with distribution function F and censored by Y1, Y2…, YN. We can only observe (Zt, δt),i=1, 2,…, n and δi,i=n+1,…, N, where Z_i=\min \left(X_i, Y_i\right), \delta_i=I\left(X_i \leqslant Y_i\right)= \begincases1 & X_iY_i\endcases,This model was proposed by Suzuki, K. (1985) and he discussed the case tnat Xi is a discrete random variable taking finite values. In this paper we discuss the case that Xi has a continuous distribution function F. We propose a estimator \hatF of F and prove that √N(\hatF(t)-Ft)) converges to a Gussion process.

     

/

返回文章
返回