一类随机变量函数的分布收敛速度
Distribution Convegence Rate of Continvous Random Variables Functions
-
摘要: 设连续型随机变量ξ1n,…ξrn相互独立且分布收敛于ξ1,…,ξr,y=φ(x1,…,xr)是Rr,到R1的连续函数, ηn=φ(ξ1n,…ξrn)和η=φ(ξ1,…,ξr)都为连续型随机变量,Fξin(x),Fηn(x),Fξi(x),Fη(x)为相应的分布函数本文讨论并证明了:如果supx|Fξin(x)-Fξi(x)|≤\fracL\sqrtn,i=1,...,r,L为常数.那么在一定条件下;存在常数c使\sup _x\left|F_\eta_n(x)-F_\eta(x)\right| \leq \fracc\sqrtn,特别地φ(x1,…,xr)=x12+…+xr2和φ(x1,…,xr)=x12+…+xk2/x12+…+xr2时,上述结论成立。Abstract: Suppose continuous random variables ξ1n,…ξrn are mutually independent and distributiuon convegence to ξ1,…,ξr and ηn=φ(ξ1n,…ξrn) are continuous random variables,Fξin(x),Fηn(x),Fξi(x),Fη(x) are the corresponding distribution functions. Under some conditions, we prove that supx|Fξn(x)-F*n(x)|≤d f c \sqrtn if supx|Fξin(x)-Fξi(x)|≤\fracL\sqrtn,where c and L are constants, i=1,… r. Especially whenφ(x1,…,xr)=x12+…+x or φ(x1,…,xr)=x12+…+xk2/x12+…+xr2 the result above is correct.