Marshall-Olkin威布尔分布的贝叶斯分析
Bayesian Analysis of the Marshall-Olkin Bivariate Weibull Distribution
-
摘要: Kundu与Gupta提出用重要抽样法来计算Marshall-Olkin两元威布尔分布参数的贝叶斯估计, 然而我们发现在样本量变大的情况下, 重要抽样算法的参数估计效果却不理想. 在这篇文章中, 我们引入潜在变量来简化似然函数, 并且提出利用MCMC算法实现对该模型未知参数的估计. 为了评价我们提出方法的有效性, 我们将提出的贝叶斯方法与极大似然估计数据模拟结果作对比, 可以发现: 即使在样本量很小的情况下, 提出的贝叶斯方法的参数估计效果更理想. 实例分析也说明了这一点.Abstract: Kundu and Gupta proposed to use the importance sampling method to compute the Bayesian estimation of the unknown parameters of the Marshall-Olkin bivariate Weibull distribution. However, we find that the performance of the importance sampling method becomes worse as the sample size gets larger. In this paper, we introduce latent variables to simplify the likelihood function, and use MCMC algorithm to estimate the unknown parameters. Numerical simulations are carried out to assess the performance of the proposed method by comparing with the maximum likelihood estimation, and we find that the Bayesian estimates perform better even for the case of small sample size. A real data is also analyzed for illustrative purpose.