非正常分层先验下多元线性模型中后验的正常性

Improper and Proper Posteriors with Improper Priors in Multivariate Linear Model

  • 摘要: 在Bayes分析中, MCMC算法是一个简单且行之有效的计算后验的方法. 但是, 有时在非正常后验下得到的Markov链也可能表现出似乎收敛的特征, 这将会导致不正确的统计推断. 为此, 本文给出了在多元线性模型中利用非正常分层先验得到正常后验所需满足的充要条件. 此外, 使用Gibbs方法和Metropolis-Hasting方法来进行后验抽样, 并通过随机模拟说明了正常后验理论结果的重要性.

     

    Abstract: In Bayesian analysis, the Markov Chain Monte Carlo (MCMC) algorithm is an efficient and simple method to compute posteriors. However, the chain may appear to converge while the posterior is improper, which will leads to incorrect statistical inferences. In this paper, we focus on the necessary and sufficient conditions for which improper hierarchical priors can yield proper posteriors in a multivariate linear model. In addition, we carry out a simulation study to illustrate the theoretical results, in which the Gibbs sampling and Metropolis-Hasting sampling are employed to generate the posteriors.

     

/

返回文章
返回