Abstract:
In this paper, we extend the previous Markov-modulated reflected Brownian motion model discussed in 1 to a Markov-modulated reflected jump diffusion process, where the jump component is described as a Markov-modulated compound Poisson process. We compute the joint stationary distribution of the bivariate Markov jump process. An abstract example with two states is given to illustrate how the stationary equation described as a system of ordinary integro-differential equations is solved by choosing appropriate boundary conditions. As a special case, we also give the sationary distribution for this Markov jump process but without Markovian regime-switching.