具有复杂约束混料试验的渐近D-最优设计

Asymptotically D-Optimal Design of Mixture Experiment with Complex Constraints

  • 摘要: 复杂约束条件下试验设计区域极不规则, 通常难以得到精确的最优设计. 本文构造一种针对混料试验设计的随机搜索算法(MDRS), 在具有复杂约束的区域内由Monte-Carlo方法产生一组初始点集, 并通过MDRS算法迭代至逼近最优点集. 通过实例验证, 这种方法是有效的. 它可以作为衡量其他设计的一个标准, 即只有当给出的其他设计优于近似的最优解时才是有效.

     

    Abstract: It is difficult to get an accurate optimum design when the experimental design area is very irregular under complex constraints. This paper constructs a random search algorithm for mixture experiments designed (MDRS). Firstly, generating an initial points set in areas with complex constraints by the Monte-Carlo method, then use MDRS algorithm iterative to approximate optimum set. By way of example verification, this method is effective. It can be used as a standard measure of other designs, that is the only effective when given superior to other designs approximate optimal solution.

     

/

返回文章
返回