截断线性模型的Fourier变换估计
Fourier Transform Estimation of the Truncated Linear Model
-
摘要: 设有模型Y=Xβ0+U其中β0为未知参数,X为自变量,误差项U与X独立,且EU=0,U~F(未知)。当W≤t(已知)时才有观察(X,Y)。本文给出模型参数β0的Fourier变换估计,并证明了估计量\widehat\boldsymbol\beta的强相合性及渐近正态性。Abstract: Let Y=Xβ0+U be a truncated linear regression model, where β0 is a unknown parameter and U is independent of X with mean 0 and unknown cumulative distribution F. the datum (X,Y) is observed only if W≤t(known). In this paper, β0 is estimated by Fourier transformation method, and it is shown that the estimate of β0 is strongly consistent and asymptotically normal.