Abstract:
Suppose that for each positive number
t,
E(
t)and
A(
t)are disjoint events. Let
J1(
t),
J2(
t)and
Jε(
t)denote
E(
t),
A(
t) and
E(
t)∪
A(
t).respectively Let
J(
t,
L)denote\bigcup_l \in L J_l(t),where
L∈ 1, 2, 3. If for any 00<
t1﹤…<
ti+g, we have
P(
J(
t1,
L1)…
J(
ti-1,
Li-1)
E(
ti)...
J(
ti+1,
Li+1)…
J(
t i+g,
Li+g)=
P(
J(
t1,
L1)…
J(
ti-1,
Li-1)
E(
ti))
P(
J(
ti+1一
ti,
Li+1)…
J(
ti+g一
ti,
Li+g),then(
E(
t),
A(
t):
t>0will be called
ε-regenerative phenomenon and (
p(
t),
a(
t)) the corresponding
p-
a pair, where
p(
t)=
P(
E(
t)),
a(
t)=
P(
A(
t)) Let \lim _t \rightarrow 0 p(t)=1. Then (
p(
t),
a(
t)) is a
p-
apair if and only if there are Markovtransition functions
Pt(·,·), standard state
x, measurable set
B,
x∈
B, such that
p(
t)=
Pt,(
x,
x),
a(
t=
Pt(
x,
B); if and only if
a(
t) is continuous,
p(
t) is a
p-function (with canonical measure
μ)1, and there is a measurable function
g(
s) such that 0≤
g(
s)≤
μ(
s, ∞ and a(t)=\int_0^t p(t-s) g(s) d s. The limits and products of
p-
a pairs are also
p-
a pairs. Some conditions for a
p-
a pair to be finite decomposable and to be indecompo-sable are given.