倒向随机微分方程解的Malliavin微分

Malliavin Derivatives of Solutions for BSDE

  • 摘要: 讨论倒向随机微分方程 Y_t=\xi+\int_t^T g\left(s, Y_s, Z_s\right) d s-\int_t^T Z_s d W_s 解在Malliavin微分意义下的可微性,并得到其Malliavin二阶微分仍然满足一个倒向随机微分方程,用迭代方法构造一个随机序列 (Yn, Zn),证明在Malliavin微分意义下二阶可微,同时证明了它在Sobolev空间D2,2中收敛于一个线性倒向随机微分方程的解。

     

    Abstract: We discuss second order differentiability of solutions for BSDE under Malliavin Calculus sense. The second order derivative is determined by a linear backward stochastic differential equation. In this paper we employ iterating method to construct a pair of stochastic process sequences (Yn, Zn) and prove that it converges to the solution of a linear BSDE in Sobolev space D2,2. As a result it is second order differentiable under the sense of Malliavin Calculus.

     

/

返回文章
返回